

International Congress for Sustainable Ecosystems in the Mediterranean Area THE CHEMICAL COMPOSITION AND ANTIOXIDANT POTENTIAL October 2-3, 2024. Split, Croatia OF MICROALGAE Chaetocerus costatus

Roberta FRLETA MATAS¹, Martina ČAGALJ², Katarina JELUŠIĆ², Sanja RADMAN³, Vida ŠIMAT^{2*}

¹Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Split, Croatia; ²University Department of Marine Studies, University of Split, Split, Croatia; ³Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Croatia vida@unist.hr

			-							
SUMMARY	INTRODUCTION			RESULTS						
This study compared antioxidant potential and chemical composition of the marine diatom <i>Chaetocerus</i> <i>costatus</i> (CIM953) extracted in following solvents: acetone, ethanol and hexane. Extraction was done using ultrasound assisted extraction (UAE)	Diatoms are one of the unexplored groups of marine microalgae for various biotechnological applications. Achieving maximum extraction yield is crucial for further research and commercial use of this promising resourse.	Main detected compounds Compound name	MF	Peak area (arbitrary units)			ANTIOXIDANT ASSAYS			
				Acetone	Ethanol	Hexane				
			GMENTS & DERIVATIVES		Ethanor	llexalle	Solvent	DPPH (%	ORAC (µ mM	
		Loliolide	C ₁₁ H ₁₆ O ₃	4,63×10	_	_		inhibition)	TE/L)	
				6 2,47×10			Acetone	3,51±0,47	50,66±2,22	
		Halocynthiaxanthin acetate	$C_{42}H_{56}O_5$	6	2,55×10 ⁵	-				
		Fucoxanthin	$C_{42}H_{58}O_6$	5,13×10 ⁶	4,55×10 ⁵	-	Ethanol	9,17±0,99	37,10±3,29	
		13²-hydroxy-pheophytin a	$C_{55}H_{74}N_4O_6$	1,53×10 ⁶	7,00×10 ⁶	-	Hexane	ND	ND	
MATERIALS & METHODS		Pheophytin a	$C_{55}H_{74}N_4O_5$	3,58×10 7	7,06×10 ⁵	1,41×10 ⁴	TE – tro	olox equivalent; NI	D – not detected	
	CHEMICAL COMPOSTION (UHPLC-ESI-HRMS) ANTIOXIDANT ASSAYS (DPPH & ORAC)	F.	ATTY ACID DERIVATIVES				CONCLUSIONS			
CULTIVATION		Hexadecasphinganine	$C_{16}H_{35}NO_{2}$	4,51×10 ⁶	2,08×10 ⁵	8,56×10 5				
F/2 medium		Monopalmitin	C ₁₉ H ₃₈ O ₄	3,77×10 6	6,49×10 ⁵	7,05×10 5	 Extraction with etanol gave a significantly higher yield compared to acetone and hexane The DPPH assay showed almost three times higher DPPh inhibition in percent, while the ORAC assay showed 27% higher activity of the acetone extract There was no significant difference between the etanolic and acetonic 			
18 h(light): 6 h(dark) EXTRACTION UAE 30 min 40 °C		(2,3-Dihydroxypropyl hexadecanoate)								
		Oleamide		6,56×10 6	7,00×10 ⁶	7,03×10 6				
		(Octadec-9-enamide)	C ₁₈ H ₃₅ NO							
		Monostearin		3.70×10 6	3.51×10 ⁶	3.98×10 6				
		(2,3-Dihydroxypropyl octadecanoate)	$C_{21}H_{42}O_4$							
		Erucamide	C ₂₂ H ₄₃ NO	2.18×10^{6}	2.18×10 ⁶ 2,00×10 ⁶	3,12×10 ⁵				
		(Docos-13-enamide)								
		STEROIDS & DERIVATIVES					extract, while hexane gave the			
		Chola-5,22-dien-3-ol	C ₂₄ H ₃₈ O	9,00×10 4	7,72×10 ⁴	7,76×10 ⁴	10	west number of compounds detected		
		β-Stigmasterol	$C_{29}H_{46}$	1,02×10 ³	9,60 ×10 ³	8,80×10 ³				
		Campesterol	$C_{28}H_{48}O$	1,96×10 ⁵	-	-	✓ BASED ON THE RES		SULTS OF THIS	
		(3β)-3-Hydroxystigmast-5-en-7-one	$C_{29}H_{48}O_2$	7,60×10 5	2,30×10 ⁵	7,77×10 ³		TUDY, ETANOL IS THE BEST VENT FOR EFFECTIVE DIATOM		
		24-Hydroperoxy-24-vinyl-cholesterol	$C_{29}H_{48}O_3$	5,13×104	1,58×104	-	501	ION!		

This research was partially supported under the project STIM – REI, Contract Number: KK.01.1.1.01.0003, a project funded by the EU through the ERDF – the Operational Programme Competitiveness and Cohesion 2014-2020 (KK.01.1.1.01).